日韩欧美亚洲一区,亚洲一区二区精品,在线观看国精产品一区,蜜臀99久久精品久久久久小说

AI+生物制藥的時(shí)代已來(lái),創(chuàng)業(yè)者與科學(xué)家的機(jī)會(huì)在哪里?

今年年初,AI生物制藥領(lǐng)域迎來(lái)重磅消息:Isomorphic Labs近期分別與制藥巨頭禮來(lái)(Eli Lilly and Company)和諾華(Novartis)簽訂了合作協(xié)議,這兩項(xiàng)合作未來(lái)價(jià)值或?qū)⒊^(guò)30億美元。

這一重大合作展示了AI在藥物開(kāi)發(fā)中的潛力,也預(yù)示著AI與生物技術(shù)領(lǐng)域的交融將帶來(lái)更多變革。這次合作不僅是商業(yè)上的進(jìn)展,更反映了生物制藥行業(yè)對(duì)高效、精確與創(chuàng)新技術(shù)的迫切需求。

在AI逐步改變各行各業(yè)之際,生物醫(yī)藥領(lǐng)域的企業(yè)應(yīng)當(dāng)如何看待這一工具?與大公司相比,創(chuàng)業(yè)公司的機(jī)會(huì)與挑戰(zhàn)又在哪里?基于近期N1 Life創(chuàng)始人及CEO臧曉羽博士與YDS Pharmatech創(chuàng)始人及CEO車興博士的對(duì)談,我們可以一窺未來(lái)的“AI+生物制藥”的種種可能性。

播客地址:小宇宙https://www.xiaoyuzhoufm.com/episode/668bae918fcadceb90d27dc8

              喜馬拉雅http://www.ximalaya.com/swf/sound/red.swf?id=740335958

AI+生物技術(shù):數(shù)據(jù)驅(qū)動(dòng)的新趨勢(shì)

隨著技術(shù)成熟,AI技術(shù)在現(xiàn)代藥物研發(fā)中發(fā)揮著越來(lái)越重要的作用。

從淺層神經(jīng)網(wǎng)絡(luò)到深度神經(jīng)網(wǎng)絡(luò),AI模型在處理和分析海量生物數(shù)據(jù)方面表現(xiàn)出色。英偉達(dá)(NVIDIA)的BioNeMo便是一個(gè)針對(duì)生物醫(yī)學(xué)領(lǐng)域的大型語(yǔ)言模型(LLM)和生成式AI框架,它旨在加速生命科學(xué)和醫(yī)療保健領(lǐng)域的研究和發(fā)現(xiàn)。BioNeMo這類平臺(tái)的底層設(shè)施展示了AI對(duì)生物數(shù)據(jù)的巨大需求,而這些數(shù)據(jù)正是訓(xùn)練先進(jìn)AI模型的基礎(chǔ)。

AI的核心優(yōu)勢(shì)在于其處理大規(guī)模數(shù)據(jù)集的能力,以及在這些數(shù)據(jù)集上提取復(fù)雜模式的能力。這使得AI在生物醫(yī)學(xué)領(lǐng)域中的應(yīng)用極為廣泛。例如,AI可以用來(lái)預(yù)測(cè)蛋白質(zhì)的三維結(jié)構(gòu),模擬藥物與目標(biāo)蛋白的相互作用,甚至預(yù)測(cè)潛在藥物的療效和副作用。通過(guò)這些應(yīng)用,AI不僅提高了藥物開(kāi)發(fā)的效率,還顯著降低了成本和時(shí)間。

基于這一特性,近年來(lái)涌現(xiàn)了許多AI生物制藥企業(yè)。比如Isomorphic Labs,它由Alphabet旗下的DeepMind團(tuán)隊(duì)于2021年創(chuàng)立,基于 DeepMind 的 AlphaFold 2技術(shù)來(lái)預(yù)測(cè)蛋白質(zhì)的結(jié)構(gòu)。通過(guò)揭示這些結(jié)構(gòu),研究人員有望能夠識(shí)別出新的靶點(diǎn)路徑,以便開(kāi)發(fā)出針對(duì)疾病的新型藥物或療法。

而Iambic Therapeutics是一家使用生成式AI平臺(tái)開(kāi)發(fā)新型治療藥物的公司,主要聚焦于小分子藥物。Iambic結(jié)合物理基礎(chǔ)和實(shí)驗(yàn)數(shù)據(jù)生成新分子,其技術(shù)不僅用于預(yù)測(cè)蛋白質(zhì)-配體相互作用,還用于生成分子設(shè)計(jì)。Iambic的兩大主要項(xiàng)目——針對(duì)HER2的IAM-H1和針對(duì)CDK2/CDK4的IAM-C1,分別計(jì)劃在明年進(jìn)入臨床階段。

在AI的加速發(fā)展過(guò)程中,NVIDIA等公司不僅提供強(qiáng)大的計(jì)算資源,還推動(dòng)數(shù)據(jù)標(biāo)準(zhǔn)化和共享,以支持AI模型的訓(xùn)練和應(yīng)用。預(yù)計(jì)到2025年,隨著數(shù)據(jù)量的不斷增長(zhǎng),AI模型可能會(huì)遇到數(shù)據(jù)增長(zhǎng)的瓶頸,而具有海量數(shù)據(jù)的Biotech極有可能成為驅(qū)動(dòng)下一增長(zhǎng)點(diǎn)的終極力量。這也是NVIDIA這類企業(yè)不斷投入、甚至成為Biotech-AI生態(tài)主要推動(dòng)力量的主要原因,具體做法包括投資這些Biotech公司去支持更多數(shù)據(jù)的產(chǎn)生、應(yīng)用的落地和計(jì)算方法開(kāi)發(fā)等,深度、廣泛地進(jìn)行長(zhǎng)遠(yuǎn)布局。

贏者通吃的市場(chǎng)?創(chuàng)業(yè)者的機(jī)會(huì)與挑戰(zhàn)

在AI與生物技術(shù)的交匯點(diǎn)上,大型Pharma公司和小型Biotech公司各自面臨不同的挑戰(zhàn)與機(jī)遇。

像谷歌旗下的DeepMindMeta(原FaceBook)這樣的科技巨頭,憑借其豐富的計(jì)算資源和技術(shù)儲(chǔ)備,有著雄厚的資源推動(dòng)AI大模型的研究。

例如,DeepMind的幾代AlphaFold模型在蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)方面取得了革命性進(jìn)展,成為生命科學(xué)領(lǐng)域劃時(shí)代的里程碑。這些公司的技術(shù)和算力優(yōu)勢(shì)使它們能夠迅速取得重大技術(shù)突破,突破技術(shù)邊界,引領(lǐng)行業(yè)發(fā)展。與之相對(duì)的、資源量相對(duì)落后的技術(shù),例如RoseTTAFold All Atom模型的準(zhǔn)確度已經(jīng)遺憾地落后于AlphaFold 3。從某種意義上來(lái)說(shuō),AI模型方面的創(chuàng)新已經(jīng)基本形成由巨頭公司推動(dòng)的形勢(shì),而非學(xué)術(shù)機(jī)構(gòu)或創(chuàng)業(yè)公司。

AI創(chuàng)業(yè)公司在人力和技術(shù)資源以及資金上雖然不如大公司充裕,但在靈活性和創(chuàng)新速度方面卻有著得天獨(dú)厚的優(yōu)勢(shì),它們能夠迅速適應(yīng)市場(chǎng)動(dòng)態(tài)變化,將新技術(shù)快速應(yīng)用于實(shí)際問(wèn)題中。

然而,創(chuàng)業(yè)公司也時(shí)刻面臨著持續(xù)融資和技術(shù)迭代的挑戰(zhàn)。與大公司相比,創(chuàng)業(yè)公司缺乏大規(guī)模的研發(fā)團(tuán)隊(duì)和基礎(chǔ)設(shè)施,在開(kāi)發(fā)新技術(shù)時(shí)也就面臨更多的風(fēng)險(xiǎn),尤其是在數(shù)據(jù)的獲取和模型的優(yōu)化方面,必須在資源有限的情況下保持競(jìng)爭(zhēng)力。

除此之外,AI Biotech公司還需面對(duì)傳統(tǒng)制藥公司的競(jìng)爭(zhēng)——這些公司擁有深厚的行業(yè)經(jīng)驗(yàn)和強(qiáng)大的研發(fā)能力。為了在競(jìng)爭(zhēng)中脫穎而出,小型AI Biotech公司需要找到市場(chǎng)中的獨(dú)特定位。AI biotech典型的例子如上文提到的Iambic,利用AI技術(shù)在管線推進(jìn)方面取得了顯著的進(jìn)展。

另一方面,傳統(tǒng)Biotech公司則更關(guān)注解決實(shí)際的科學(xué)和醫(yī)學(xué)問(wèn)題,并利用AI工具加速實(shí)驗(yàn)科學(xué)的進(jìn)步,推動(dòng)新藥的發(fā)現(xiàn)和開(kāi)發(fā)。N1 Life便是典型的Biotech公司,致力于將多肽等生物兼容性分子材料用于藥物遞送載體的研發(fā)與應(yīng)用,目前已開(kāi)發(fā)針對(duì)不同藥物類型的Absotride和ChARLS兩大模型。N1 Life的N1-109正是這種創(chuàng)新的例子,針對(duì)轉(zhuǎn)移型卵巢癌、胰腺癌和胃癌等適應(yīng)癥,展示了極高的治療潛力。目前N1 Life將理性設(shè)計(jì)及AI技術(shù)結(jié)合,實(shí)現(xiàn)指定性質(zhì)的篩選和定向優(yōu)化,逐步建立了從載體設(shè)計(jì)、到載體篩選、再到載體成藥應(yīng)用的“干濕結(jié)合”研發(fā)線路。通過(guò)平臺(tái)合作等方式與國(guó)內(nèi)外數(shù)家創(chuàng)新藥企達(dá)成技術(shù)合作,將自主開(kāi)發(fā)的載體分子應(yīng)用于不同的疾病領(lǐng)域,旨在以更低的成本和更短的研發(fā)周期。

這些各有所長(zhǎng)的AI biotech公司正面臨著一個(gè)蓬勃發(fā)展的市場(chǎng):Transparent Market Research報(bào)告預(yù)測(cè),到2030年,AI生物制藥市場(chǎng)將增長(zhǎng)至131億美元。

AI+生物制藥的時(shí)代已來(lái),創(chuàng)業(yè)者與科學(xué)家的機(jī)會(huì)在哪里?

科學(xué)家 vs AI:日益緊密的共生關(guān)系

AI驅(qū)動(dòng)的生物技術(shù)革命中,科學(xué)家扮演著關(guān)鍵角色。

盡管AI模型在蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)和藥物設(shè)計(jì)等方面展示了強(qiáng)大能力,但這些模型的開(kāi)發(fā)和應(yīng)用離不開(kāi)科學(xué)家的專業(yè)知識(shí)和經(jīng)驗(yàn)。

例如,DeepMind的AlphaFold 2模型整合了物理學(xué)和生物信息學(xué)的研究成果,利用了科學(xué)家們幾十年來(lái)積累的蛋白質(zhì)結(jié)構(gòu)數(shù)據(jù),使其在蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)方面取得了重要突破。科學(xué)家們的貢獻(xiàn)不僅在于數(shù)據(jù)的提供,還包括對(duì)AI模型結(jié)果的解釋和應(yīng)用,這對(duì)于推動(dòng)模型的應(yīng)用(例如新藥研發(fā))非常關(guān)鍵。

除了為AI提供了大量的數(shù)據(jù)和研究成果,科學(xué)家們還參與了模型的設(shè)計(jì)和優(yōu)化。這種緊密的協(xié)作確保了AI技術(shù)在生物技術(shù)領(lǐng)域中的科學(xué)準(zhǔn)確性和實(shí)用性。

從另一方面來(lái)看,科學(xué)家與AI的共生關(guān)系不僅體現(xiàn)在數(shù)據(jù)的分析和模型的優(yōu)化上,也包括在臨床試驗(yàn)和藥物開(kāi)發(fā)的各個(gè)階段。除靶點(diǎn)模擬和分子設(shè)計(jì)之外,科學(xué)家還利用AI技術(shù)分析臨床數(shù)據(jù),設(shè)計(jì)臨床實(shí)驗(yàn),提高生產(chǎn)效率,加速法規(guī)流程等。這種“你中有我,我中有你”的融合,不斷加速整個(gè)藥物開(kāi)發(fā)的進(jìn)程,還提高了藥物開(kāi)發(fā)的成功率。

更重要的是,人體生物系統(tǒng)是如此地復(fù)雜難解,比計(jì)算機(jī)要復(fù)雜許多,仍有大量的問(wèn)題需要受過(guò)經(jīng)驗(yàn)豐富的科學(xué)家來(lái)定義問(wèn)題、設(shè)計(jì)解決思路、論證和優(yōu)化模型。未來(lái),對(duì)于交叉學(xué)科科學(xué)人才的需求將呈現(xiàn)爆發(fā)式增長(zhǎng),生物語(yǔ)言和計(jì)算語(yǔ)言的互通將成為無(wú)法阻擋的趨勢(shì)。從教育體系到人才職業(yè)培養(yǎng)、科學(xué)訓(xùn)練,也是人類駕馭人工智能不可或缺的工具。

隨著AI技術(shù)走向落地,有一點(diǎn)已成行業(yè)共識(shí):AI無(wú)法代替科學(xué)家,而能夠提升科學(xué)家效率、以合作共贏心態(tài)來(lái)開(kāi)發(fā)的AI解決方案,未來(lái)會(huì)成為幫助生物制藥領(lǐng)域科學(xué)家的優(yōu)秀工具。

AI推動(dòng)下的未來(lái)醫(yī)藥:更高效、更精準(zhǔn)

未來(lái)AI與生物技術(shù)的融合將繼續(xù)推動(dòng)藥物研發(fā)和醫(yī)療技術(shù)的發(fā)展。除傳統(tǒng)技術(shù)類型之外,AI在新興領(lǐng)域,例如基因編輯、疾病診斷和新型療法開(kāi)發(fā)中的應(yīng)用將更加廣泛。這不僅將提高新藥的開(kāi)發(fā)效率、優(yōu)化現(xiàn)有流程,更能打開(kāi)理解和治療疾病的新視角。

隨著AI模型的不斷完善和應(yīng)用的擴(kuò)展,我們有望看到更加精準(zhǔn)和個(gè)性化的醫(yī)療解決方案。這種變革不僅能改善患者的治療效果,還能顯著降低醫(yī)療成本,并提升全球醫(yī)療服務(wù)的可及性。

大量資金涌入、技術(shù)突破頻現(xiàn)之際,AI與生物技術(shù)的結(jié)合可能是醫(yī)藥行業(yè)的本世紀(jì)最重要的轉(zhuǎn)折點(diǎn)。這一趨勢(shì)可能改變我們對(duì)疾病的理解和治療方式,還將引領(lǐng)整個(gè)醫(yī)療行業(yè)進(jìn)入新的時(shí)代,為人類健康帶來(lái)深遠(yuǎn)影響。

然而,AI的廣泛應(yīng)用也帶來(lái)了新的挑戰(zhàn),包括數(shù)據(jù)隱私、算法偏見(jiàn)和模型透明度等問(wèn)題。這些問(wèn)題需要行業(yè)和監(jiān)管機(jī)構(gòu)共同努力解決,以確保AI技術(shù)在醫(yī)學(xué)和生物技術(shù)領(lǐng)域的安全應(yīng)用。

本文轉(zhuǎn)載自:,不代表科技訊之立場(chǎng)。原文鏈接:http://whjh.rwmeiti.com/preview/1/202408161002594372692.html

陳晨陳晨管理團(tuán)隊(duì)

相關(guān)推薦

發(fā)表回復(fù)

登錄后才能評(píng)論
主站蜘蛛池模板: 彰武县| 临桂县| 乐业县| 永顺县| 砀山县| 遂川县| 上杭县| 梅河口市| 邳州市| 仲巴县| 新邵县| 黄山市| 泽库县| 抚松县| 邵阳市| 浦北县| 苗栗市| 余姚市| 峨眉山市| 通州市| 杭州市| 济阳县| 邹城市| 秭归县| 天水市| 门源| 米林县| 冕宁县| 霍邱县| 台东县| 宜昌市| 肃南| 泸溪县| 唐山市| 桂东县| 宜州市| 鄂托克旗| 腾冲县| 无锡市| 富裕县| 丹阳市|